A compariscn with data obtained with the continuous-flow calorimeter shows that for an
Ar—He mixture at a pressure of 10 bar, the excess enthalpy is approximately three times as
large as the excess enthalpy of this mixture at a pressure of 18.4 bar and a 0.26 mole frac~
tion of Ar, according to data in [8],

NOTATION

p, pressure of gaseous mixture; Ap, change in pressure during mixing; V, volume of mix=-
ture; V¥, excess volume, Qr,Vv» heat of mixing at constant volume and temperature; HE, excess
enthalpy; hE, molar excess enthalpy; T, absolute temperature; R, universal gas constant.
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MEASUREMENT OF THERMOPHYSICAL PROPERTIES OF MIXTURES BY PERIODIC
HEATING OF PROBES

S. N. Kravchun UDC 536,223

We analyze the theory of the method of periodic heating of probes as applied to
the study of thermophysical properties of liquid and gaseous mixtures.

One of the promising methods of investigating thermophysical properties of fluids is the
method of the periodic heating of probes [1-4]. The gist of the method consists in the re-
cording of temperature fluctuations of a probe (wire or metal foil) when heated by an alter-
nating current. The amplitude and phase of the temperature fluctuations of the probe depend
on the thermophysical properties of the fluid in which it is immersed (on the thermal conduc-
tivity A and the volumetric heat capacity cpp for a cylindrical probe, and on the thermal
activity b = VYie,p for a plane probe). The measurement of the amplitude and phase of the tem=—
perature fluctuations of the probe by electronic means makes it possible to determine these
thermophysical characteristics. The method developed can be used to study the thermophysical
properties of pure gases and liquids over awide range of states [1]. The application of the method of
periodic heating to the investigation of solutlons requires extension of the theory of the
method.

It is well known that in gaseous and liquid mixtures a temperature gradient gives rise
not only to a heat flux, but also to a diffusive flux (thermal diffusion, the Soret effect).
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On the other hand a concentration gradient causes not only a diffusive flux, but also a heat
flux (diffusion heat conduction, the Dufour effect). The presence of cross effects compli-
cates the heat-transfer process [5]. This is reflected in the introduction of two thermal
conductivities to describe heat transfer in mixtures: Ao — the thermal conductivity of a sys-
tem of uniform concentration, and A, — the thermal conductivity of a system in a stationary
state when the concentration distribution produced by the temperature gradient has been
established and the diffusive flux is equal to zero. The difference between o and X is not
negligible, at least for gases. Thus, for example, under normal conditions it may reach ~1.97%
for a He—Ar mixture, ~2.4% for He—Xe, and ~1.7%7 for He—Xr [5]. The necessity of taking ac-
count of the contribution of diffusion heat conduction in solid solutions was pointed outin [6].

Steady-state methods of investigating thermal conductivity (the plane layer method, co-
axial cylinders, etc.,) can be used to measure )A,. It was shown in [7] that the method based
on the recording of the temperature of a wire probe fed a step voltage records this same
quantity. The question naturally arises as to which thermal conductivity is measured by the
method of periodic (sinusoidal) heating.

For a stationary binary mixture the expressions for the heat and mass fluxes have the
form [8]

7(1 = — }\‘OVT — 04 "ﬂi— TD’VCM (l)
, ocy
_Jl_ = — ¢6,D'yT — Dye,. ()
p .

It is clear from Eq. (1) that Ao relates the heat flux and the temperature gradient for
ve, = 0 (i.e., for a homogeneous system), In the stationary state (J,/p = 0), we have

Ve = — iy (D'/D) T,

and substitution of the last relation into (1) gives

- au D"
Jo o= —{ hy— o TD e, T
q ( 0 01 861 1 D )V
The coefficient of proportionality in this case is A,. The relation between the thermal con-
ductivities Ao and ), (taking account of the Onsager reciprocal relations D' = D") is thus
expressed by the equality
opy D2
Ao — he = ¢4 T .
0 16904 ac, D
In accord with Eqs. (1) and (2) the heat-conduction and diffusion equations have the form
oT Oy
C = A?T - ——TD'y?,
Py —o, oV 2, v (3)
—Z—%— = ¢,6,D'¢?T -+ Dy’cy. G

When a probe is heated by an alternating current of frequency w, its temperature and that of

the surrounding medium fluctuate with a frequency 2w, and the concentration fluctuates with

this same frequency. In a steady periodic process the temperature T and the concentration c;

can be written as the sum of a constant component independent of time and a fluctuating component:

T =T + Bexp(2int), ¢4 = ¢ -+ yexp(2iot).

Substituting these expressions into (3) and (4) and combining the results, we obtain the
following system of equations for the fluctuating components:

oo 20 o & T 2
Vo a1y I—t K. D " )
V= 2w 2iw K. 0, 6)

DI—8 ' a(i—9 T
where q¢ = Ao/cpp, E= (Ao — Aw)/2¢ and KT = (D'/D)ec;caT.
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Let us consider first the case of a plane metal foil probe (the method of measuring the
coefficient of thermal activity). We seek the solution in the form

0 = A;exp (— ax) + A, exp (— ayx) (7

(damped plane waves). The general form of the solution for vy follows from (5) and (7). Sub-
stituting this together with (7) into Eq. (6), we obtain the characteristic equation. Its
root corresponding to the solution which is damped at infinity is

1
alr{ 20 (1 + 9) [ V | _ (=9 J} , ©)
' a (1 —¥8 2 (14 q)p
where q = D/ao. Using the boundary condition J;(0)/p = 0 (no diffusive flux through the sur-

face of the probe), which in the previously introduced notation takes the form

—KTLVBI =0 F VY=o = 0, 9

and the condition 6(0) = 8o, where 65 is the amplitude of the temperature fluctuations of the
probe, it is easy to determine the coefficients A; and Ai. Thus, we obtain the solution for
6

- gy = Na) _ eu(l—Nai) 17
0(x) = Oo[exp( oyx) — o (1 Ned) exp ( an)J[l ocz(l——Nocg)J , (10)

where N = go(l — E)/[2iw(l + £/q)]. It follows from (10) that
:__(_,0‘/ %V 1tq+2V 4(1—9 an
| a (1 =8 Vg +V 1% '

Taking account of (9), we write the expression for the heat flux (1) from the surface of the
probe in the form

do
dx

x=0

Tq(0) = — Mo (1 —B) ¥0] o = — 1B 1. (12)

Substituting (11) into (12), using the fact that &€ = (Ao — A )/Ae is a small quantity, and
limiting ourselves to terms linear in &£, we obtain

Ta(0) = Ao0y [/Q—EV 1451+ Ve~

Using the last expression and the heat-balance equation for the probe [9]
Wis = (2c'm’ wils) 0, -1 24 4 (0) (13)

(W is the power expended in the probe during electrical heating, s is the surface area of the
probe, and c' and m' are the specific heat and mass of the probe), it is possible to obtain
an expression relating the amplitude of the temperature fluctuations of the probe to the
properties of the medium in which it is located. In the present case the quantity playing
the same role as the thermal activity in one~component media is

— /7. & '
‘e e —E 14)
v =Vearl]/ 1 i (1+Vq>2}

It is clear from Eq. (14) that b* is generally not directly related either to the thermal
conductivity of a homogeneous system Ao or to the stationary thermal conductivity A,, but
depends on the thermal conductivity A*, whose value lies between them: Ae < A* < Xq.

It should be noted that the measurable quantity does not depend on frequency, which
eliminates the apparent possibility of going over from the measurement of A¢ to the measure-
ment of A with decreasing frequency w of heating of the probe. This can be explained in the
following way:

The heat-conduction Eq. (3) and the diffusion Eq. (4) used to take account of the Dufour
effect are similar., As a result of this similarity the fraction of diffusion test conduction
in the total heat-transfer process remains constant during a change of freaquency. This is
confirmed by the following considerations. The characteristic time for heating by an alter-
nating current is its period t. In order for a frequency dependence to be cbserved it is



necessary to cover a range of times shorter than the time of. establish equilibrium of the
parameter being measured (the relaxation time Ty) to times considerably longer than it. The
characteristic time for the transition of the system from a homogeneous state characterized
by Ao to a stationary state characterized by Ae is determined by the relation [5]: Ty = L%/
(mD), where L is a characteristic dimension. In probing a liquid by plane temperature waves
the only characteristic dimension is the attenuation distance of the temperature wave L = (a/
w*/?, and consequently the relaxation time is rigorously related to the period of heating tr =
(a/ (2n®D))1, which eliminates the possibility of a change from T < Ty to T > Typ.

As has already been noted, the value of £ for certain gaseous mixtures amounts to several
percent. The ratio D/ac = q for moderately compressed and rarefied - gases is of the order of
unity. Thus, according to Eq. (14) the correction to A~ can reach ~1%, and the measurable
quantity b* is related to the thermal conductivity A* lying in the middle part of the internal
}\O h Am-

The value of q for liquids is small in comparison with unity (q ~ 10~?-10"%). Hence,
A% 2 Ae(l + E) ® Aot i.e., the measurable quantity b* is determined by the thermal conductivity
close to the thermal conductivity of a homogeneous system.

Let us now consider the probing of a solution by cylindrical waves (the method for the
simultaneous determination of the thermal conductivity A, the volumetric heat capacity CpPy
and the related quantities the thermometric conductivity a = A/cpp and the thermal activity
b= chpp).

We seek the solution of the system of equations (5) and (6) in a cylindrical coordinate
system in the form of damped cylindrical waves 6 = A;Ko(air) + AzKe(aar), where Ko(ar) is the
modified Bessel function [10].

The characteristic equation with roots (8) is obtained in the same way as for a plane
probe, and using boundary condition (9), the coefficients A, and Az can be determined. The
solution has the form

aK (@ro)(1 — Nad)
oKy (ot g)(1 — Noag)
a Ky (ouro)(1 — Nah)
oKy (ctar)(1 — Nozg)
where %Ko (ar)/3r = —aK, (ar), and ro is the radius of the probe. Using this solution, an ex-
pression can be obtained for the heat flux from the surface of the probe

Ky (aro) o406 N (a'zl — ocg)
Ko(oyre) o (1—Naj) —ay (1 — Nai)

Kofar) — K, (ar)

0(r) =06,

Ky (4re) — K, (¢tsr0)

Jg(ro) = Aaby ) (15)

where § = K;(@1ro)Ko(aaro) /[Ko(a1re)K, (aaro)].

Analysis of the general expression (15) is rather complicated, and therefore we at once
take account of the fact that £ << 1 for all gaseous and liquid mixtures with which we are
familiar. We also assume that q < 0.5, which simplifies the expressions for the roots of the
characteristic equation

2 2io E 2 2iw g i
~ — ; ~ 1 .
“ %0_9<1 l—q) “ Da—a('%l—qg)

The last restriction is a result of our excluding from consideration rarefied and moderately
dense gases for which - q ~ 1. Analysis of the case g ~ 1 requires separate consideration.
Taking account of the restrictions assumed, Eq. (15) is transformed to

. _ Ky (oro) ( g VEI_ :
J = Ay ———— 1 —_ . (16)
q(ro) o Ko (70) a1+ (1—qy a— g E‘l’)

Substituting (16) into the hedt-balance equation for the probe (13), we obtain an expression
for the complex amplitude of the temperature fluctuations

WIi2me . ~— hei’ uy,—iher' »; / 14¢ Vaq . -1
6= — i—b.V3 1+ g _Va ¢ ,
s [ s V ® Thei %, — i her %, ( 2(1—qp (1—9g2 v
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where »; = roV2u/aw¥l — £/ (1 — q); her » and hei % are Thomson functions. The expression for
9 yields expressions for the amplitude |6| and phase ¢ of the temperature fluctuations (the
lag of the temperature fluctuations behind the fluctuations of power supplied to the probe):

18]= —-——W;——— V hei? %, + her? %, {[her Hy— —I——LL—g—hei’ g+
SmeQ(D%,,,T] KooT)
4 2 4 2 ———-1—
4 Mg (P, hel” %y + wzher’%o] -+ [hei%i—k 1+ 18 her’ %, 4+ Mg (mghei’xi——-wiher’xo} } 2,
Kol %ol Koo

tg @ = — (" (her? w; + hei? ;) 4 (1 + LE)(hei », her’ 2, — her 2, het’ ) 4
-~ ME[p, (hei’ %, her %, — hei x, her’ ;) + 1, (hei %, hei” %; + her %, her’ »,)]} X
% {(1 -+ LE)(hei %, hei’ %, + her x, her’ »,) — ME [, (hei’ %, hei %, — her” », her %) -+ ¥, (hei », her’ %, 4 hei’ %, her )1},

where L = (1 + q)/[2(1 —~q)3]; M= /E/(l - q)z; ¥ =y, + iYs. For solutions (q << 1) the last
expressions for the amplitude 8| and tan @ reduce to expressions for one-component liquids

in which the thermal conductivity is the thermal conductivity of a homogeneous system Xo.
Actually, as q » 0, 2, — %, = ro¥2w/ae, M+ 0, L = 0.5 and #eN/(1l + LE) - %on, which reduces
Ie] and tan ¢ to forms corresponding to the solution for pure liquids [9], with no replacing
#,

Thus, the method of periodic heating with both plane and cylindrical temperature waves
can be used to measure the thermal conductivity A¢ and the related quantities the thermometric
conductivity ae¢ = Aolcpp and the thermal activity bg = VAocpp in solutions (q << 1).

NOTATION

N A, thermal conductivity; cp, specific heat; p, density; c; and ¢a, weight concentrations;
Jgs reduced heat flux; 31, diffusive flux; T, absolute temperature; t, time; D, interdiffusion
coefficient; D', Dufour coefficient; D", thermal diffusion coefficient; KT, thermal diffusion
ratio; u, chemical potential; ¢, thermometric conductivity; b, thermal activity; w, angular
frequency of electric current heating probe.
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